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We investigate structure-preserving finite element discretizations of the steady-state Stefan–Maxwell dif-
fusion problem which governs diffusion within a phase consisting of multiple species. An approach
inspired by augmented Lagrangian methods allows us to construct a symmetric positive definite aug-
mented Onsager transport matrix, which in turn leads to an effective numerical algorithm. We prove
inf-sup conditions for the continuous and discrete linearized systems and obtain error estimates for a
phase consisting of an arbitrary number of species. The discretization preserves the thermodynamically
fundamental Gibbs–Duhem equation to machine precision independent of mesh size. The results are il-
lustrated with numerical examples, including an application to modelling the diffusion of oxygen, carbon
dioxide, water vapour and nitrogen in the lungs.
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1. Introduction

Molecular diffusion is a fundamental mode of mass transport. Within a stationary solution containing a
dilute solute species of concentration c, the classical model for diffusion was formulated by Fick (1855),
which postulates that the solute’s molar flux N obeys

N =−D∇c, (1.1)

in which D > 0 is the solute’s Fickian diffusivity in the solution. Maxwell (1867) applied kinetic theory
to derive Fick’s law for binary ideal-gas diffusion, showing for isothermal gases that D further relates
to a composition-independent constant material property. Stefan (1871) extended Maxwell’s analysis
to multicomponent gases, expressing the gradient of each species concentration in terms of a matrix of
binary diffusivities. The resulting Stefan–Maxwell equations (also commonly called Maxwell–Stefan
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equations in the engineering and mathematical literature) have been verified experimentally for gas
diffusion in studies such as Duncan & Toor (1962) and Carty & Schrodt (1975).

Using his theory of irreversible thermodynamics, Onsager (1931a,b, 1945) provided a broader theo-
retical framework for mass transport that could also be applied to multicomponent diffusion in nonideal
phases, including liquids and/or solids. Hirschfelder et al. (1954) substantiated this more abstract anal-
ysis, manipulating thermodynamic laws and hydrodynamic equations to construct the diffusion driv-
ing forces for general nonisobaric, nonisothermal, multicomponent diffusion systems. Combined with
Lightfoot, Cussler and Rettig’s observation that the Stefan–Maxwell diffusivities map invertibly into
Onsager’s transport matrix, and can therefore be used for condensed phases as well as gases (Lightfoot
et al., 1962), this extended the Stefan–Maxwell theory to all molecular diffusion processes. Newman
et al. (1965) brought the generalization further, accounting for materials containing charged solutes,
thereby completing the development of the contemporary Stefan–Maxwell equations. Modern exposi-
tions of the theory can be found in Krishna & Wesselingh (1997); Standart et al. (1979) and Datta &
Vilekar (2010).

Given a bounded Lipschitz domain Ω ⊂ Rd , d ∈ {2,3}, the Stefan–Maxwell equations describing
the diffusion of the n species that constitute a common phase at a given absolute temperature T > 0 are
given by

di =
n

∑
j=1
i6= j

RT cic j

Di jcT
(vi− v j) (1.2)

for i = 1,2, . . . ,n, in which R > 0 is the ideal gas constant. The terms ci : Ω → R+ and vi : Ω → Rd

denote the concentration and velocity of species i = 1,2, . . . ,n respectively, related to the molar flux of
the ith species by Ni = civi. For species i 6= j, Di j ∈ R represents the Stefan–Maxwell diffusivity of
species i through species j; these material parameters are symmetric in the species indices, Di j = D ji,
and coefficients Dii are not defined. The term cT in equation (1.2) denotes the total concentration,
defined as

cT :=
n

∑
i=1

ci, (1.3)

and the terms di : Ω →Rd represent the diffusion driving forces, which generally depend on the species
concentrations, temperature and pressure. In the case of isothermal, isobaric ideal-gas diffusion consid-
ered here, di =−RT ∇ci. Furthermore, an ideal gas satisfies the equation of state

p = cTRT, (1.4)

in which p is the pressure. Hence in the isothermal, isobaric setting, cT is a constant. To pose the Stefan–
Maxwell convection-diffusion problem, flux constitutive laws (1.2) and the equation of state (1.4) are
coupled to the continuity equations

∂ci

∂ t
=−∇ ·

(
civi
)
+ ri, (1.5)

where ri : Ω →R is a specified volumetric reaction rate, which quantifies the generation or depletion of
species i by homogeneous chemical reactions. Under the ideal-gas assumption considered in this paper,
we are interested in solving (1.2) (with di = −RT ∇ci) and (1.5) for the species concentrations ci and
their respective velocities vi.

The Stefan–Maxwell equations have found a diverse range of applications in areas such as biol-
ogy, electrochemistry, and plasma physics. For specific examples, we refer the reader to the studies by
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Boudin et al. (2010); Robertson & Zydney (1988); Abdullah & Das (2007); Newman & Thomas-Alyea
(2012); Liu & Monroe (2014) and Kolesnikov & Tirskii (1984). Because they account for solute/solute
interactions as well as solute/solvent interactions, Stefan–Maxwell models can exhibit fundamentally
different behaviour from Fickian models. For example, in Duncan & Toor (1962) ‘uphill diffusion’ is
observed, wherein the directions of a species’ molar flux and its concentration gradient coincide, in con-
tradiction to (1.1). In electrochemistry, the Stefan–Maxwell formalism justifies surprising observations
like negative transference, where the flow of an electric current with one sign carries ions of opposing
sign along with it (Monroe & Delacourt, 2013).

Under restrictive assumptions, a multicomponent extension of Fick’s law known as dilute solution
theory can be recovered. For a dilute set of species ck, k = 2, . . . ,n in the presence of a solvent in far
greater proportions, c1, one can formally neglect the terms cic j in (1.2) whenever both i, j > 2 and take
cT ≈ c1, allowing rearrangement to express the molar fluxes as

Ni =
Di1

RT
di + civ1. (1.6)

For dilute solutes the driving forces often take the form di =−χiRT ∇ci, where χi is known as a Darken
factor (Darken, 1948), in which case one can identify Di = Di1χi as the Fickian diffusivity of species
i in the solution. Writing equations (1.6) for all solutes and replacing v1 with the barycentric velocity
v produces the dilute solution theory. We direct the reader to Newman & Thomas-Alyea (2012) for
further details. When the solute driving forces within dilute solution theory are written in terms of
both concentration gradients and the electric field, (1.6) is referred to as a Nernst–Planck relationship,
based on the work by Nernst (1888) and Planck (1890). Nernst–Planck equations have been extensively
studied in the mathematical literature, sometimes coupled with Poisson’s equation to account for the
distribution of the electric potential, and a Navier–Stokes equation or a Darcy flow to compute the
velocity v. We refer the reader to Schmuck (2009); Herz et al. (2012); Liu et al. (2015) and Bousquet
et al. (2018) and the references therein for the existing mathematical literature on the Nernst–Planck
equation. In many cases dilute solution theory is not appropriate, and the full Stefan–Maxwell equations
must be considered. A comparison of Fickian to Stefan–Maxwell diffusion profiles for gases can be
found in Krishna & Wesselingh (1997) and Boudin et al. (2010). Examples of the limitations of dilute-
solution models are discussed in the context of lung modelling, earth science and electrolyte transport
in the studies by Chang et al. (1975); Baehr & Bruell (1990) and Bizeray et al. (2016) respectively.

1.1 Physical structure and consequences

The mathematical structure of irreversible thermodynamics will prove useful below for devising dis-
cretizations and error estimates for the Stefan–Maxwell diffusion problem. We therefore summarize
some key points of the theory. We begin with the transport equations postulated by Onsager (1945) for
isotropic materials,

di =
n

∑
j=1

Mi jv j, (1.7)

in which the statistical reciprocal relations developed in Onsager (1931a,b) require the transport matrix
M : Ω → Rn×n to be real symmetric.

The Onsager transport equations (1.7) were developed independently of the Stefan–Maxwell theory
(1.2). It was subsequently realized by Lightfoot et al. (1962) that the Stefan–Maxwell equations could
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be understood in terms of Onsager’s transport matrix by identifying

Mi j = Mi j(ci,c j,cT) =

{
−RT cic j

Di jcT
if i 6= j

∑
n
k 6=i

RT cick
DikcT

if i = j
(1.8)

as the entries of M.
Time evolution of nonequilibrium states leads to local entropy production, denoted by Ṡ. For an

isothermal, isobaric system with a given collection of species velocities (v1,v2, . . . ,vn) experiencing
(d1,d2, . . . ,dn) nonequilibrium diffusion driving forces, the balances of material, momentum, and heat
are manipulated in Hirschfelder et al. (1954) and Monroe & Newman (2009) to write the entropy pro-
duction of isothermal diffusion as

Ṡ =
1
T

n

∑
i=1

di · vi, (1.9)

in which the di are identified as functions of the gradients of temperature, pressure, and (c1,c2, ...,cn) by
grouping terms in the Gibbs–Duhem equation from equilibrium thermodynamics (de Groot & Mazur,
1962; Hirschfelder et al., 1954; Goyal & Monroe, 2017). In general there may be other terms in (1.9)
such as viscous dissipation or reaction entropy, but these will be neglected here.

The second law of thermodynamics further demands that the energy dissipation T Ṡ is non-negative,
T Ṡ > 0, with equality only in an equilibrium state, which is defined by the condition that di = 0 for all
i. Thermodynamic stability therefore requires further that M be positive semidefinite.

Some additional structure of the transport matrix is specific to multicomponent mass diffusion. Im-
portantly, the theory must guarantee that diffusional motion, driven by thermodynamic property gra-
dients, remains distinct from species convection, a non-dissipative process driven by bulk flow. This
distinction is made by requiring that (1.7) be invariant to a shift of every species velocity by a vector
field v̄ : Ω → Rd , i.e. the equation remains unchanged when each vi in (1.7) is replaced by (vi− v̄). The
essential physical distinction between diffusion and convection consequently requires that

n

∑
j=1

Mi j = 0, (1.10)

as noted by Onsager (1945) and Helfand (1960). Hence M has a null eigenvalue corresponding to the
eigenvector (1,1, . . . ,1)> ∈Rn. Invariance with respect to the convective velocity is naturally embedded
in the Stefan–Maxwell form (1.2), because vi− v j = (vi− v̄)− (v j− v̄).

The symmetry of M suggested by Onsager (1945) requires that Di j = D ji, a fact that has also
been demonstrated directly for Stefan–Maxwell diffusion by fluctuation theory in Monroe et al. (2015).
The symmetry of the transport matrix combined with the nullspace (1.10) allows recovery of the full
Gibbs–Duhem equation, namely

n

∑
i=1

di = 0. (1.11)

In the context of transport theory, equation (1.11) can be seen as a statement of Newton’s third law of
motion, that action equals reaction. In thermodynamics this is necessary to be consistent with the first
law of thermodynamics and the extensivity of the Gibbs free energy.

Reasoning physically that all diffusion processes are necessarily dissipative, Onsager (1945) makes
the stronger assumption that M has exactly one null eigenvalue. Taken together, the physical arguments
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require that M is symmetric positive semidefinite, and that its eigenvalues, {λ M
i=1}n

i=1, may be ordered
as

0 = λ
M
1 < λ

M
2 6 · · ·6 λ

M
n , (1.12)

a spectral structure that will be used throughout this paper.
Combining (1.7) and (1.9) implies that

T Ṡ =
n

∑
i, j=1

vi ·Mi jv j =
1
2

n

∑
i=1

n

∑
j 6=i

cic jRT
Di jcT

(v j− vi)
2 > 0. (1.13)

At positive concentrations, energy dissipation T Ṡ > 0 occurs whenever there is relative species motion,
implying that the equality in (1.13) occurs if and only if v1 = v2 = · · ·= vn.

One must take care to note that M may afford additional nullspaces beyond (1.10) if any concen-
tration vanishes. Consequently, in order to phrase the Stefan–Maxwell equations in terms of Onsager’s
transport laws (1.7) with a transport matrix M that possesses the spectral structure (1.12), it will be
necessary to assume that ci > 0 almost everywhere for each i = 1,2, . . .n. We make this assumption
henceforth.

Because the present discussion is limited to ideal-gas mixtures, it can be assumed that the Stefan–
Maxwell diffusion coefficients Di j are given constants, which places even stronger restrictions on their
values. Whenever the concentrations satisfy ci > κ > 0 for each i = 1,2, . . . ,n and any positive constant
κ , then λκ 6 λ M

2 for a positive constant λκ which depends only on κ , a fact that will be used throughout
the paper. From the calculation (1.13), it follows that a necessary and sufficient condition for (1.12)
to be true for all positive concentrations is that each Di j is strictly positive (Standart et al., 1979). It
must be stressed, however, that the Stefan–Maxwell diffusion coefficients in many physical systems
depend strongly on the concentrations of the species, in which case negative Stefan–Maxwell diffusion
coefficients are not only possible, but are observed and of practical interest (Kraaijeveld & Wesselingh,
1993; Villaluenga et al., 2018). Therefore in order to present a general framework for multispecies
diffusion, the results in this paper only use the spectral structure (1.12), not the positivity of the Stefan–
Maxwell diffusion coefficients.

In systems with more than one spatial dimension, the existence of the nullspace (1.10) means that
the problem (1.2), (1.3), (1.5) will not be well-posed unless a choice of convective velocity is made (see
Remark 3.1 below for the one-dimensional case). This can be done by specifying that the mass-flux
must equal given data u : Ω → Rd :

u =
n

∑
j=1

M jc jv j, (1.14)

where Mi > 0 is the molar mass of species i. In general, the mass-flux must also be solved for via the
Cauchy momentum equation, which in the absence of a pressure gradient or an external force field, can
be written in conservation form as

∂u
∂ t

=−∇ ·
(

ρ
−1u⊗u−σ

)
, (1.15)

where the density ρ is defined as

ρ :=
n

∑
j=1

M jc j, (1.16)

and σ denotes the deformation stress tensor appropriate for the medium. We refer to the problem of
solving (1.2), (1.5), (1.14) and (1.15) as the Stefan–Maxwell convection-diffusion problem. In this
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work we assume that u is given and focus on the solution of (1.2), (1.5) and (1.14) under an additional
steady-state assumption, which we call the steady-state Stefan–Maxwell diffusion problem.

1.2 Premise and main results

The central idea of this manuscript is to incorporate the constraint (1.14) by augmenting (1.2), in a man-
ner inspired by the augmented Lagrangian approach (Bochev & Lehoucq, 2006; Fortin & Glowinski,
1983). Given γ > 0, for each i we multiply both sides of (1.14) by γRT Mici/ρ and add the resulting
term to the ith equation of (1.2) to deduce that

di +
γRT Mici

ρ
u =

n

∑
j 6=i

RT cic j

Di jcT

(
vi− v j

)
+

γRT Mici

ρ

n

∑
j=1

M jc jv j =
n

∑
j=1

Mγ

i jv j (1.17)

for i = 1,2, . . . ,n, where Mγ

i j is the augmented transport matrix

Mγ

i j = Mi j + γLi j, (1.18)

in which
Li j := RT MiM jcic j/ρ. (1.19)

Our particular choice of the entries of L allows us to compute

n

∑
i, j=1

vi ·Mγ

i jv j,=
1
2

n

∑
i=1

n

∑
j 6=i

cic jRT
Di jcT

(v j− vi)
2 + γ

( n

∑
j=1

M jc jv j

)2
(1.20)

to show that the augmented transport matrix is symmetric positive definite. The positive-definiteness
achieved by this augmentation will cause the associated bilinear forms in the variational formulation to
follow to be coercive, greatly facilitating the analysis.

The paper is organized as follows. Section 2 provides an overview of the existing numerical literature
on the Stefan–Maxwell equations and contrasts our approach with previous efforts. In section 3 we
derive a suitable weak formulation for the problem and prove well-posedness of a linearized system
of (1.2)-(1.5) in section 4. In section 5 we show stability of a discretization of this linearized system
and prove error estimates for the linearization. Finally, in section 6 we verify our error estimates with
a manufactured solution and illustrate our method by simulating the interdiffusion of oxygen, carbon
dioxide, water vapour and nitrogen in the lungs.

2. Existing numerical literature

Despite their wide applicability, the Stefan–Maxwell equations have received relatively little attention
from numerical analysts. In nearly all existing work, the equations are formulated in terms of the molar
flux Ni = civi. The interdependence among the collection of driving forces implied by Gibbs–Duhem
relation (1.11) allows the equation for dn to be discarded. The mass-flux constraint (1.14) is then used
to eliminate the nth species velocity from the system. Following this process, a non-singular matrix A is
derived which satisfies

di =
n−1

∑
j=1

Ai jc jv j =
n−1

∑
j=1

Ai jN j. (2.1)
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One can then proceed to solve for the molar fluxes in terms of the driving forces di by inverting A. If, for
example, we have di =−RT ∇ci, the inverted, truncated flux laws can be substituted into the continuity
equations (1.5) for species i = 1, ...,n−1 to yield

∂ci

∂ t
=−∇ ·

(n−1

∑
j=1

A−1
i j ∇c j

)
. (2.2)

Thus one obtains evolution equations for the concentrations, having eliminated the molar fluxes com-
pletely. Papers which take this approach and analyse the resulting equations to determine some exis-
tence and uniqueness properties include Boudin et al. (2012); Bothe (2010); Jüngel & Stelzer (2012) and
Jüngel & Leingang (2019). Boudin et al. (2012) and Jüngel & Leingang (2019) also analyse numerical
schemes along these lines. It is worth remarking that the matrix A−1 is not positive symmetric definite,
although, at least in certain circumstances, one can define ‘entropy variables’ so that the resulting system
is symmetric positive definite, as carried out by Jüngel & Leingang (2019).

The approach of McLeod & Bourgault (2014) does not eliminate molar fluxes, but rather solves
for them in a mixed saddle point formulation. They then prove well-posedness of a linearized system
consisting of three species, under some constraints on the Stefan–Maxwell diffusion coefficients. A
discretization using mixed finite elements is then presented and error bounds on the linearized system
are obtained. Our paper is similar in scope, but with several key differences and extensions.

First, our approach does not need any rearrangement of (1.14) to eliminate one species, but rather
incorporates the constraint via the augmented formulation (1.17). The choice of species to eliminate is
somewhat arbitrary, and with the augmentation is no longer necessary. Augmentation also exploits the
symmetric positive semidefinite structure of the transport matrix and preserves permutational symmetry
of the system. This will be particularly pertinent for anticipated future work where we intend to have
more complex driving forces of the form

di =−ci∇µi +
ciMi

ρ
∇p, (2.3)

where µi is the electrochemical potential of species i and p is the pressure. These more complex driving
forces render rearrangement increasingly intractable.

Second, the symmetric positive definite structure of the augmented transport matrix yields straight-
forward proofs of the coercivity of bilinear forms on appropriate function spaces. As a consequence, we
will prove that the linearized system is well-posed in the continuous and discrete setting and derive error
bounds for its discretization in the general case of n species. The methodology presented in this paper
also encompasses the case where individual Stefan–Maxwell diffusion coefficients may be negative.

Finally, we are able to design the discrete formulation in a structure-preserving way so that the
Gibbs–Duhem equation (1.11) is satisfied up to machine precision, independent of mesh size. Previous
works instead assume the Gibbs–Duhem equation and use it to infer the concentration of the nth species
in a postprocessing step.

3. Problem formulation

We proceed to cast the problem into variational form. Note that both sides of equation (1.17) are pro-
portional to RT and hence without loss of generality we assume that RT = 1. Our idealized assumption
on the driving forces then becomes

di :=−∇ci, i = 1,2, . . .n. (3.1)
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In this case the Gibbs–Duhem equation (1.11) reduces to

∇cT = 0, (3.2)

i.e. that total concentration is constant. This is also important as the constancy of cT is required to
be consistent with the equation of state (1.4), which is distinct from the Gibbs–Duhem equation. We
assume that u ∈ H1(Ω)d and consider the boundary conditions

Ni ·n = civi ·n = gi ∈ H−1/2(ΓN) on ΓN , i = 1,2, . . . ,n, (3.3)

ci = fi > 0 ∈ H1/2(ΓD) on ΓD, i = 1,2, . . . ,n, (3.4)

where n is the outward facing unit normal vector and ΓN ,ΓD partition ∂Ω . The equalities in (3.3)-(3.4)
are to be understood in the sense of traces (Evans, 2010). It is necessary to assume that fi is positive
for each i = 1,2, . . . ,n to avoid M acquiring another nullspace at the boundary. Either one of ΓN and ΓD
may be empty. This boundary data is assumed to satisfy

n

∑
i=1

giMi = u ·n on ΓN , (3.5)

n

∑
i=1

fi =CT on ΓD, (3.6)

where CT > 0 is a constant that we will show is equal to the total concentration (1.3). These assump-
tions are necessary to be consistent with the Gibbs–Duhem equation (1.11) and the mass-flux constraint
(1.14). Under the steady-state assumption, the species continuity equations (1.5) become

∇ · (civi) = ri. (3.7)

Therefore, we demand that the reaction rates, ri ∈ L2(Ω), satisfy

n

∑
i=1

riMi = ∇ ·u in Ω (3.8)

to ensure consistency of (3.7) with (1.14).
We define the function space

H1
ΓD
(Ω) = {wi ∈ H1(Ω) : wi|

ΓD
= 0}, (3.9)

and the affine function space

H1
fi(Ω) = {wi ∈ H1(Ω) : wi|

ΓD
= fi}. (3.10)

We can now derive the weak formulation. We test (1.17) with τi ∈ L2(Ω)d and integrate over Ω to
derive for all i = 1,2, . . . ,n,∫

Ω

(
−∇ci +

γMici

ρ
u
)
· τi =

∫
Ω

( n

∑
j 6=i

cic j

Di jcT

(
vi− v j

)
+

γMici

ρ

n

∑
j=1

M jc jv j

)
· τi, (3.11)

for all τi ∈ L2(Ω)d .
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For a given wi ∈ H1
ΓD
(Ω) we multiply both sides of (3.7) by −wi and integrate by parts to yield that

for all i = 1,2, . . . ,n, ∫
Ω

civi ·∇wi−
∫

ΓN

giwi =−
∫

Ω

riwi, (3.12)

for all wi ∈ H1
ΓD
(Ω). We therefore seek vi ∈ L2(Ω)d and ci ∈ H1

fi(Ω) such that (3.11) and (3.12) hold
for every τi ∈ L2(Q)d and wi ∈ H1

ΓD
(Ω), for each i = 1,2, . . . ,n.

REMARK 3.1 In the case of one dimension, (3.7) and the boundary data (3.3)-(3.4) allow us to recover
civi completely. Consequently no augmentation is necessary.

We will now show that such a weak solution satisfies both the Gibbs–Duhem equation (1.11) and
the mass-flux constraint (1.14). Choosing τi = τ ∈ L2(Ω)d for every i = 1,2, . . . ,n and summing over i
in (3.11) yields

n

∑
i=1

∫
Ω

(
−∇ci +

γMici

ρ
u
)
· τ =

n

∑
i=1

∫
Ω

( n

∑
j 6=i

cic j

Di jcT

(
vi− v j

)
+

γMici

ρ

n

∑
j=1

M jc jv j

)
· τ. (3.13)

However we can use the nullspace (1.10) and symmetry of M to deduce
n

∑
i=1

n

∑
j 6=i

cic j

Di jcT

(
vi− v j

)
=

n

∑
i, j=1

Mi jv j = 0, (3.14)

and by the definition of the density (1.16), we obtain that
n

∑
i=1

∫
Ω

γMicivi · τ−
∫

Ω

γu · τ +
∫

Ω

∇cT · τ = 0, (3.15)

for all τ ∈ L2(Ω)d . Considering the first and second terms with the choice τ =∇w for some w∈H1
ΓD
(Ω),

and using (3.12),
n

∑
i=1

∫
Ω

γMicivi ·∇w−
∫

Ω

γu ·∇w =
n

∑
i=1

γ

(
−
∫

Ω

Miriw+
∫

ΓN

Migiw
)
−
∫

Ω

γu ·∇w (3.16)

=−
∫

Ω

γw∇ ·u+
∫

ΓN

γwu ·n−
∫

Ω

γu ·∇w (by (3.5) and (3.8))

= 0,

the final equality following from integration by parts. In light of this, (3.15) becomes∫
Ω

∇cT ·∇w = 0, (3.17)

for every w ∈ H1
ΓD
(Ω). In particular, as cT is constant on ΓD by (3.6), there exists a w ∈ H1

ΓD
(Ω) such

that ∇w = ∇cT. For this choice of w, (3.17) becomes∫
Ω

∣∣∇cT
∣∣2 = 0. (3.18)

Hence ∇cT = 0 almost everywhere, which is the Gibbs–Duhem equation (1.11). The relationship (3.6)
ensures that cT =CT. Equation (3.15) then simplifies to∫

Ω

( n

∑
i=1

Micivi

)
· τ =

∫
Ω

u · τ ∀ τ ∈ L2(Ω)d , (3.19)
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a variational statement of the mass-flux constraint (1.14).

REMARK 3.2 With pure Neumann boundary data (ΓD = /0), the system (3.11)-(3.12) is not well posed.
Observe that if ci and vi solve equations (3.11) and (3.12) then so do the variables ĉi =αci and v̂i =α−1vi
for any α > 0. In order to make the problem well posed it is necessary to impose auxiliary conditions
such as ∫

Ω

ci = C̄i, i = 1,2, . . . ,n, (3.20)

for known constants C̄i. The physical interpretation of this constraint is clear. In the transient dynamics
we have the continuity equations

∂ci

∂ t
=−∇ · (civi)+ ri. (3.21)

Integrating over Ω and using the divergence theorem we deduce that

d
dt

∫
Ω

ci =−
∫

Ω

gi +
∫

Ω

ri. (3.22)

For a steady-state solution to exist, it is necessary that the right hand side of this equation is 0. Therefore,
for all time t,

d
dt

∫
Ω

ci = 0. (3.23)

Hence the integral in (3.20) is independent of time and therefore C̄i is completely specified by the initial
conditions.

4. Linearization and well-posedness

We consider a linearization of Picard type. The general approach is that whenever a velocity is mul-
tiplied by a concentration, we replace the concentration with our current guess. The exception to
this is explained in Remark 4.1. Let us define the function spaces X = H1(Ω)n, XΓD = H1

ΓD
(Ω)n,

Q = (L2(Ω)d)n as well as the affine function space X f̃ = (H1
f1(Ω), . . . ,H1

fn(Ω)). We set the norm
on XΓD as ‖ · ‖XΓD

= ‖ · ‖H1
0 (Ω)n . Throughout the rest of this paper we will frequently use the notation

q̃ = (q1, . . . ,qn) to denote an n-tuple in one of these function/affine function spaces as well as their
discrete subspaces.

Given a previous guess for the concentration c̃k = (ck
1, . . . ,c

k
n), we define a bilinear form ac̃k(·, ·) :

Q×Q→ R given by

ac̃k(ṽ, τ̃) =
n

∑
i=1

∫
Ω

( n

∑
j 6=i

ck
i ck

j

Di jcT

(
vi− v j

)
+

γMick
i

ρk

n

∑
j=1

M jck
jv j

)
· τi =

n

∑
i, j

∫
Ω

Mγ,k
i j v j · τi, (4.1)

for τ̃, ṽ ∈ Q. Here Mγ,k denotes the augmented transport matrix, the i, j entries being defined by using
the current guess for the concentration c̃k in equations (1.8) and (1.18). Similarly, ρk is the density
evaluated using c̃k in (1.16).

For the current guess c̃k we also define the bilinear form bc̃k : Q×X → R,

bc̃k(τ̃, w̃) =
n

∑
i=1

∫
Ω

ck
i τi ·∇wi, (4.2)
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for (τ̃, w̃) ∈ Q×X , and the bilinear form b : Q×X → R,

b(τ̃, w̃) =
n

∑
i=1

∫
Ω

τi ·∇wi. (4.3)

For τ̃ ∈ Q the linear functional lc̃k(·) : Q→ R is defined as

lc̃k(τ̃) = γ

n

∑
i=1

∫
Ω

ck
i Mi

ρk τi ·u. (4.4)

The non-linear iteration scheme is as follows. We take an initial guess (ṽ0, c̃0) ∈ Q×X f̃ which
satisfies the Dirichlet boundary data (3.3) and

n

∑
i=1

c0
i = cT (4.5)

almost everywhere for a given constant cT, determined by either (3.6) or (3.20). For k = 0,1,2, . . .
the next iterate of the sequence is computed as the solution to the following generalized saddle point
problem: find (ṽk+1, c̃k+1) ∈ Q×X f̃ such that

ac̃k(ṽk+1, τ̃)+b(τ̃, c̃k+1) = lc̃k(τ̃), ∀ τ̃ ∈ Q, (4.6)

bc̃k(ṽk+1, w̃) =−(r̃, w̃)L2(Ω)n +(g̃, w̃)L2(ΓN)n , ∀ w̃ ∈ XΓD , (4.7)

subject to the Dirichlet conditions (3.4). This is repeated until

‖c̃k+1− c̃k‖X +‖ṽk+1− ṽk‖Q 6 ε, (4.8)

for a set tolerance ε > 0.
Note that (ṽk, c̃k) is a weak solution to the non-linear problem (3.11)-(3.12) if and only if it is a

fixed point of this iteration scheme. Indeed if (ṽk, c̃k) is a weak solution to the non-linear problem
(3.11)-(3.12) then the solution (ṽk+1, c̃k+1) to the equations (4.6)-(4.7) remains (ṽk, c̃k). Conversely if
(ṽk+1, c̃k+1) = (ṽk, c̃k) then, converting (4.6)-(4.7) to a non-linear system by replacing c̃k with c̃k+1, we
recover the non-linear problem (3.11)-(3.12) and observe it is solved with (ṽk+1, c̃k+1).

We proceed to prove well-posedness of the linear system (4.6)-(4.7) by applying either Theorem 2.1
in Ciarlet et al. (2003) or Theorem 3.1 in Nicolaides (1982). To invoke these theorems we shall prove
the following conditions.

Condition 1: There exists a constant α > 0 such that

ac̃k(ṽ, ṽ)> α‖ṽ‖2
Q (4.9)

for all ṽ ∈ Q.
Condition 2: There exist constants βi > 0, i = 1,2 such that for all w̃ ∈ X ,

sup
τ∈Q

b(τ̃, w̃)
‖τ̃‖Q

> β1‖w̃‖X ,

sup
τ∈Q

bc̃k(τ̃, w̃)
‖τ̃‖Q

> β2‖w̃‖X .

(4.10)
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REMARK 4.1 An alternative to our definition of the linear functional (4.4) would be to replace c̃k with
c̃k+1 and therefore include the term as part of the bilinear functional b(·, ·) instead. However, the current
formulation (4.6)-(4.7) ensures that we can derive the equivalent of (3.15) for the linearized system

n

∑
i=1

∫
Ω

γMick
i vi · τ−

∫
Ω

γu · τ +
∫

Ω

n

∑
i=1

∇ck+1
i · τ = 0. (4.11)

Then, following an argument identical to that presented in section 3, we deduce that for each k, the
iterates satisfy

n

∑
i=1

ck+1
i = cT (4.12)

almost everywhere. When combined with the assumption that the concentrations are positive almost ev-
erywhere, this implies that ac̃k(·, ·),b(·, ·),bc̃k(·, ·) are all bounded bilinear functionals on their respective
function spaces.

REMARK 4.2 The common alternative, to formulate the problem in terms of molar fluxes rather than
velocities, has the advantage that the continuity equations do not need to be linearized. However, a
disadvantage is that the resulting bilinear form a(·, ·) is no longer symmetric or coercive, which would
add significant difficulty to the analysis.

In order to prove (4.9) it will be useful to write the bilinear form, ac̃k(·, ·) as the integral of a quadratic
form. For this purpose it is useful to define the matrix

M γ,k = Mγ,k⊗ I (4.13)

where I is the d×d identity matrix and⊗ is the Kronecker product. We can then write the bilinear form
as

ac̃k(ṽ, τ̃) =
∫

Ω

τ̃ ·M γ,kṽ. (4.14)

To show the coercivity condition (4.9) we must show for some α > 0

ac̃k(ṽ, ṽ) =
∫

Ω

ṽ ·M γ,kṽ>
∫

Ω

α|ṽ|2 (4.15)

Hence (4.9) is satisfied if and only if M γ,k is uniformly positive definite over Ω almost everywhere.
Either by direct calculation, or by using a standard property of the Kronecker delta product, one can ver-
ify that M γ,k will have the same eigenvalues as Mγ,k, each with geometric multiplicity of d. Therefore
coercivity of the bilinear form ac̃k(·, ·) is equivalent to showing that Mγ,k is symmetric positive definite
almost everywhere in Ω .

Assuming that every component of our current guess c̃k is strictly positive almost everywhere, we
prove positive definiteness of Mγ,k in the following lemma.

LEMMA 4.1 If ck
i > κ > 0 a.e. for each i = 1,2, . . . ,n and a positive constant κ , then for any γ > 0, the

matrix Mγ,k is symmetric positive definite almost everywhere.

Proof. For almost every x ∈ Ω , Mk is symmetric positive semidefinite. We proceed with the follow-
ing argument pointwise. The normalized eigenvectors {ϑ M

1 , . . . ,ϑ M
n } form an orthonormal basis. By

hypothesis the associated eigenvalues {λ M
1 , . . . ,λ M

n } can be ordered such that

0 = λ
M
1 < λ

M
2 6 · · ·6 λ

M
n . (4.16)
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The nullspace of Mk then consists of the space spanned by the vector ϑ M
1 = n−1/2(1,1, . . . ,1) ∈ Rn.

Furthermore,
λ

M
2 > λκ > 0 (4.17)

for a λκ that depends only on κ .
Given any ϑ̃ ∈ Rn we can expand it in terms of the basis {ϑ M

1 , . . . ,ϑ M
n } as

ϑ̃ =
n

∑
i=1

αiϑ
M
i (4.18)

for basis coefficients {αi}n
i=1. Furthermore, by orthonormality,

ϑ̃ ·Mk
ϑ̃ =

n

∑
i=1

λ
M
i |αi|2. (4.19)

The matrix L k defined in (1.19) is also symmetric positive semidefinite, explicitly for ϑ̃ =(ϑ1, . . . ,ϑn)∈
Rn

ϑ̃ ·L k
ϑ̃ =

1
ρk

( n

∑
j=1

M jck
jϑ j

)2
. (4.20)

Hence we can also construct a basis {ϑL
1 , . . . ,ϑL

n } of orthonormal eigenvectors. The vector ϑ M
1 is also

an eigenvector of L k with the eigenvalue ρk. We will identify this eigenvector as ϑL
1 . L k is of rank 1

as it is the outer product of a vector with itself, and hence all other eigenvalues are zero.
Hence for a given ϑ̃ ∈ Rn we can expand it as

ϑ̃ = α1ϑ
M
1 +

n

∑
i=2

βiϑ
L
i , (4.21)

for basis coefficients {β}n
i=1 and calculate

ϑ̃ ·L k
ϑ̃ = ρ

k|α1|2. (4.22)

Consequently,

ϑ̃ ·Mγ,k
ϑ̃ = γρ

k|α1|2 +
n

∑
i=2

λ
M
i |αi|2 (4.23)

and therefore Mγ,k is positive definite at x. This argument can be repeated for every x ∈ Ω except
perhaps on a set of measure zero. Therefore Mγ,k is symmetric positive definite almost everywhere. �

REMARK 4.3 It is useful to understand how λκ scales with κ . This can be achieved by the following
scaling argument. Suppose that whenever ck

i > 1 for each i = 1,2, . . . ,n we have the lower bound on the
eigenvalues, as in (4.17), of λκ=1. Now suppose that for any κ > 0 we have ck

i > κ for each i= 1,2, . . . ,n.
We can then define the new variables κi = ck

i /κ . We then see that κi > 1 for each i. Define the Mκ as
the transport matrix with these new variables κi replacing ci. By direct calculation we can check that

Mκ =
1
κ

M. (4.24)

By construction we have that λ
Mκ

2 > λκ=1. It follows from (4.24) that λ M
2 = κλ

Mκ

2 > κλκ=1. Hence
we see that λκ = O(κ).
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LEMMA 4.2 Assume that c̄i > κ > 0 a.e. for each i = 1,2, . . . ,n and γ > 0. Then the bilinear forms
a(·, ·),b(·, ·) and bc̃k(·, ·) satisfy the conditions (4.9) and (4.10) for some constants α,β1,β2 respectively,
which depend only on κ , Ω .

Proof. From Lemma (4.1) we have that

ac̃k(ṽ, ṽ) =
∫

Ω

τ̃ ·M γ,kṽ = ∑
i, j

∫
Ω

v j ·Mγ,k
i j vi > α‖ṽ‖2

Q, (4.25)

where
α = min{γρ

k,λκ}, (4.26)

and λκ is as in equation (4.17). This proves condition (4.9).
For conditions (4.10), given a w̃ ∈ X , we can choose τ̃ = ∇w̃ which then yields

b(∇w̃, w̃) =
n

∑
i=1

∫
Ω

|∇wi|2 = ‖w̃‖XΓD
. (4.27)

Similarly for bc̃k we have
bc̃k(∇w̃, w̃)> κ‖w̃‖XΓD

. (4.28)

The final step is that we use either ΓD 6= /0 or the condition (3.20) to deduce a Poincaré inequality of
the form

Cp‖w̃‖XΓD
> ‖w̃‖X for all w̃ ∈ X (4.29)

for some constant Cp > 0 depending only on Ω . Hence

b(∇w̃, w̃)>C−1
p ‖w̃‖X (4.30)

bc̃k(∇w̃, w̃)> κC−1
p ‖w̃‖X . (4.31)

�

THEOREM 4.1 Assume γ > 0 and the current guess c̃k satisfies ck
i > κ > 0 a.e. for each i= 1,2, . . . ,n and

a positive constant κ . Then, under the condition ΓD 6= /0 or (3.20), there exists a unique (ṽk+1, c̃k+1) ∈
Q×X f̃ which solves the system (4.6)-(4.7).

Proof. Our remaining obstacle for the proof is that X f̃ is not a Hilbert space. If we use the ansatz
c̃k+1 = ĉk+1

0 + c̃0, where ĉk+1
0 ∈ XΓD and c̃0 ∈ X f̃ was our initial guess, then we can recast the saddle

point problem (4.6)-(4.7) as: find (ṽk+1, ĉk+1
0 ) ∈ Q×XΓD such that

ac̃k(ṽk+1, τ̃)+b(τ̃, ĉk+1
0 ) = lc̃k(τ̃)−b(τ̃, c̃0) ∀ τ̃ ∈ Q, (4.32)

bc̃k(ṽk+1, w̃) =−(r̃, w̃)L2(Ω)n +(g̃, w̃)L2(ΓN)n ∀ w̃ ∈ XΓD . (4.33)

By (Ciarlet et al., 2003, Theorem 2.1) or (Nicolaides, 1982, Theorem 3.1) there exists a unique (ṽk+1, ĉk+1
0 )∈

Q×XΓD solution to this system. The proof concludes by observing that if c̃k+1 = ĉk+1
0 + c̃0 then c̃k+1 ∈X f̃

and satisfies the system (4.6)-(4.7). �
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5. Discretization and error estimates

Here we discretize the generalized saddle point problem (4.6)-(4.7) and prove error estimates. Let Th
be a regular triangulation of Ω with maximum diameter h. For m > 1 we define the finite dimensional
subspaces,

Qh = {τ̃h ∈ Q | τh,i
∣∣
K ∈ Pm−1(K) ∀K ∈Th, i = 1,2, . . . ,n}, (5.1)

Xh = {w̃h ∈ X | wh,i
∣∣
K ∈ Pm(K) ∀K ∈Th, i = 1,2, . . . ,n}, (5.2)

XΓD,h = {w̃h ∈ XΓD | wh,i
∣∣
K ∈ Pm(K) ∀K ∈Th, i = 1,2, . . . ,n}. (5.3)

Here Pm(K) denotes the set of mth order polynomials on the cell K ∈Th.
We will require linear interpolation operators on the spaces X and Q, see (Boffi et al., 2013, pp 72).

PROPOSITION 5.1 There exist linear interpolation operators Πh : X→Xh and Λh : Q→Qh and constants
C1,C2 such that, for any c̃ ∈ X , ṽ ∈ Q,

‖c̃−Πhc̃‖X 6C1hm‖c̃‖Hm+1
0 (Ω)n ,

‖ṽ−Λhṽ‖Q 6C2hm‖ṽ‖(Hm
0 (Ω)d)n .

Our non-linear iteration scheme in the discrete case is as follows; we take an initial guess c̃0 ∈
X f̃ which satisfies (4.5) and then construct c̃0

h := Πhc̃0 ∈ Xh. The Dirichlet boundary conditions (3.4)
are typically only satisfied approximately; however we note that, due to linearity of the interpolation
operator and equation (4.5),

n

∑
i=1

c0
i,h =

n

∑
i=1

Πhc0
i = ΠhcT = cT, (5.4)

and therefore condition (3.6) remains enforced.
For k = 0,1,2, . . . the next iterate of the sequence (ṽk+1

h , c̃k+1
h ) is computed by solving the following

linear system: find (ṽk+1
h , ĉk+1

0,h ) ∈ Qh×XΓD,h such that

ac̃k
h
(ṽk+1

h , τ̃h)+b(τ̃h, ĉk+1
0,h ) = lc̃k

h
(τ̃h)−b(τ̃h, c̃0

h) ∀ τ̃h ∈ Qh, (5.5)

bc̃k
h
(ṽk+1

h , w̃h) =−(r̃h, w̃h)L2(Ω)n +(g̃, w̃h)L2(ΓN)n ∀ w̃h ∈ XΓD,h. (5.6)

We then set c̃k+1
h = ĉk+1

0,h + c̃0
h and repeat this until ‖c̃k+1

h − c̃k
h‖X + ‖ṽk+1

h − ṽk
h‖Q 6 ε for our tolerance

ε > 0.
A distinct advantage of our formulation is that the coercivity condition (4.9) and the inf-sup condi-

tion (4.10) are automatically satisfied with the same constants α,β1,β2. This follows from the fact that
the choice of function spaces preserves a crucial structure:

for any w̃ ∈ Xh, ∇w̃ ∈ Qh, (5.7)

which in particular allows us to repeat the proofs of (4.9) and (4.10) in the discrete setting in exactly the
same manner. We thus have the following.

THEOREM 5.2 Assume γ > 0 and that c̃k
h satisfies ck

i,h > κ > 0 a.e. for each i = 1,2, . . . ,n and a positive
constant κ . Then, under the condition ΓD 6= /0 or (3.20), there exists a unique (ṽk+1

h , ĉk+1
0,h ) ∈ Qh×XΓD,h

which solves the system (5.5)-(5.6).
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Given the well-posedness of the discretized system, we proceed to obtain error estimates. However,
given that we have the conditions (4.9)-(4.10) satisfied for the spaces Qh and Xh, we can use a known
result for generalized saddle point systems (Nicolaides, 1982, Theorem 4.1) to deduce the following.

THEOREM 5.3 There exist constants L1,L2 depending only on α,β1,β2,Ω such that

‖ĉk+1
0 − ĉk+1

0,h ‖XΓD
6 L1

(
inf

w̃h∈XΓD,h
‖ĉk+1

0 − w̃h‖X + inf
τ̃h∈Qh

‖ṽk+1− τ̃h‖Q

)
, (5.8)

‖ṽk+1− ṽk+1
h ‖Q 6 L2

(
inf

w̃h∈XΓD,h
‖ĉk+1

0 − w̃h‖X + inf
τ̃h∈Qh

‖ṽk+1− τ̃h‖Q

)
. (5.9)

We have by the Poincaré inequality (4.29) and Proposition 5.1, for some constants Cp,C1,

‖c̃k+1− c̃k+1
h ‖X 6 ‖ĉk+1

0 − ĉk+1
0,h ‖X +‖c̃0− c̃0

h‖X , (5.10)

6C−1
p ‖ĉk+1

0 − ĉk+1
0,h ‖XΓD

+C1hm‖c̃0‖Hm+1
0 (Ω). (5.11)

Therefore, noting that Πhĉk+1
0 ∈ XΓD,h, we can combine Theorem 5.3 and Proposition 5.1 to deduce the

following corollary.

COROLLARY 5.1 There exist constants C̄1,C̄2 depending only on α,β1,β2,Ω such that

‖c̃k+1− c̃k+1
h ‖X 6 C̄1hm

(
‖c̃0‖Hm+1

0 (Ω)n +‖ĉk+1
0 ‖Hm+1

0 (Ω)n +‖ṽk+1‖(Hm
0 (Ω)d)n

)
, (5.12)

‖ṽk+1− ṽk+1
h ‖Q 6 C̄2hm

(
‖c̃0‖Hm+1

0 (Ω)n +‖ĉk+1
0 ‖Hm+1

0 (Ω)n +‖ṽk+1‖(Hm
0 (Ω)d)n

)
. (5.13)

For example, if we choose m = 1 then we have

‖ṽk+1− ṽk+1
h ‖Q +‖c̃k+1− c̃k+1

h ‖X = O(h). (5.14)

In the next section we will observe that actually ‖c̃k+1− c̃k+1
h ‖L2(Ω)n = O(hm+1). Thus it is likely that

one can use duality methods to improve the error estimate in the L2 norm of c̃.

REMARK 5.1 It can be observed in the proof of (Nicolaides, 1982, Theorem 4.1) that the constants
L1,L2 appearing in Theorem 5.3 scale as O(α−1). Therefore from (4.26) and the scaling argument in
Remark 4.3 we then see that the constants C̄1,C̄2 will scale as O(κ−1).

The Gibbs–Duhem equation is preserved up to machine-precision as can observed by the following
argument. Replacing cT with cT,h we can reproduce the argument of section 3 and derive the equivalent
of equation (3.18); ∫

Ω

|∇cT,h|2 = 0. (5.15)

Combining this with (5.4) we see that cT,h =CT, where CT is determined by either (3.6) or (3.20). This
calculation does not use any approximation based on the mesh size.

6. Numerical results

Two numerical simulations were implemented with our method. The discretization was implemented
using the Firedrake software (Rathgeber et al., 2016) and PETSc (Balay et al., 2019, 1997; Dalcin et al.,
2011; Hendrickson & Leland, 1995). The arising linear systems were solved using MUMPS (Amestoy
et al., 2001, 2006).
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6.1 Numerical example one: Manufactured solution

We first consider a test case on Ω = [0,1]2 for which the solution is analytically known in order to
validate the error estimates of section 5.

For n = 4 the family of manufactured solutions is constructed as follows. For j = 1,2 let k j(·) : Ω →
R be a differentiable function with a strict bound |k j|< K j for a positive constant K j. We set

c1 = k1 +K1, c2 =−k1 +K1,

c3 = k2 +K2, c4 =−k2 +K2.

We further assume that
D13 = D14 = D24 = D23. (6.1)

Then for any given mass-flux u ∈ L2(Ω)d an exact solution is given when

v1 =−
2

RT

( K1

D12
+

K1

D13

)
∇ lnc1 +

u
cT

, v2 =−
c1

c2
v1 +

u
cT

,

v3 =−−
2

RT

( K2

D34
+

K1

D31

)
∇ lnc3 +

u
cT

, v4 =−
c3

c4
v3 +

u
cT

,

and, for i = 1,2,3,4,
ri = div

(
civi
)
. (6.2)

We then choose Mi = 1 for i = 1,2,3,4 so that the mass-flux constraint (1.14) is satisfied.
For this numerical experiment we take RT = 1 and

k1(x,y) =
1
2

exp(8xy(1− y)(1− x)), k2(x,y) =
1
2

sin(πx)sin(πy); (6.3)

we can then take K1 = K2 = 1. We then have cT = 4. For i = 1,2,3,4 we pose the Dirichlet boundary
conditions

ci = 1, on ∂Ω , (6.4)

and set the mass-flux u = (0,1)>.
The diffusion coefficients are chosen as D12 = D21 = 2, D34 = D43 = 3 and all other diffusion

coefficients set to 1. We take m = 1 for the discrete spaces (5.1)-(5.2). For our initial guess we choose
c0

i = c0
i,h = 1 for i = 1,2,3,4. We then proceed with the iteration detailed in section 5 and compute the

sequence (ṽk+1
h , c̃k+1

h ) until,

‖c̃k+1
h − c̃k

h‖X +‖ṽk+1
h − ṽk

h‖Q 6 ε, (6.5)

and for this k we set (ṽ, c̃) = (ṽk+1, c̃k+1). In this experiment we took ε = 10−13 and γ = 1. The resulting
concentration profile and velocity vector field for species 1 are plotted in Figure 1.
To analyse the rate of convergence we define the three errors

E1 =
( n

∑
j=1
‖c j− c j,h‖2

L2(Ω)

) 1
2
, (6.6)

E2 =
( n

∑
j=1
‖∇c j−∇c j,h‖2

L2(Ω)d

) 1
2
, (6.7)

E3 =
( n

∑
j=1
‖v j− v j,h‖2

L2(Ω)d

) 1
2
, (6.8)



18 of 25

FIG. 1. Concentration of species 1 (left) and its velocity vector field (right). The colour bar on the vector
field plot denotes magnitude.

and the error in the mass-flux

E4 =
∥∥∥ n

∑
j=1

M jc jv j−u
∥∥∥

L2(Ω)d
. (6.9)

According to Proposition 5.1, E j = O(h) for i = 1,2,3. This is validated on the log-log error plot
displayed in Figure 2. We also observe that E4 = O(h).

FIG. 2. log-log error plot

Note that we actually observe that E1 = O(h2). This suggests that if one developed a duality-based error
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estimate for generalized saddle point systems, the error estimate on E1 could be improved.
Our discretization also preserves the Gibbs–Duhem relationship up to machine precision, indepen-

dent of the mesh size. The relevant values are tabulated in Table 1.

Mesh size Non-linear iterations ‖∇cT‖L2(Ω)d

8×8 11 < 10−14

16×16 11 < 10−14

32×32 11 < 10−14

64×64 11 < 10−14

TABLE 1. The Gibbs–Duhem relationship is preserved regardless of mesh size

6.2 Numerical example two: Diffusion of oxygen and effusion of carbon dioxide in the lungs

If treated as a steady diffusion process, mass transport in the bronchi within the lungs involves simul-
taneous ingress of oxygen and egress of carbon dioxide. Moreover, the air through which these species
diffuse also contains nitrogen and water vapour. For most modelling purposes, it is not necessary to
distinguish among the various constituents of air, but in lung modelling we are interested in the distri-
butions of both the oxygen consumed and carbon dioxide produced by the body, as well as the relative
humidity along their diffusion paths. The concentrations of these compounds throughout the lungs has
been modelled using the Stefan–Maxwell equations in Boudin et al. (2010) and Chang et al. (1975). For
this example we solve for the mole fraction yi = ci/cT. Mathematically this is the same as normalising
the total concentration to 1. As cT is a constant in this setting, this does not change the weak formulation
or the algorithm. We take the mass-flux, u, as zero, and thus consider purely diffusional forces. For a
realistic lung model it would be necessary to model the transient dynamics as well as the convective
forces and pressure-driven elastic expansion, but this example suffices to illustrate the time-averaged
multispecies transport physics.

This simulation was computed on the mesh shown in Figure 3. The surface mesh was provided by
C. Geuzaine and J. F. Remacle (Remacle et al., 2010; Marchandise et al., 2011), and from this the 3D
mesh was constructed using the software MeshMixer (Schmidt & Singh, 2010) and Gmsh (Geuzaine &
Remacle, 2009). The mesh consisted of 115609 vertices and 404174 elements.
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FIG. 3. Mesh of the void space within the lungs at ambient pressure. The surface Γ1 denotes the inlet at
the trachea; the surface Γ2 is a grouping of all the surfaces at the end of the tertiary bronchi.

Following the two-dimensional numerical experiments performed in Boudin et al. (2010), we take
mixed Neumann-Dirichlet boundary conditions. At the inlet of the trachea, Γ1, and at the end of the
tertiary bronchi, Γ2, we set the Dirichlet boundary data to the compositions of humidified air and alveolar
air respectively. For the remaining boundary region we set homogeneous Neumann (no-flux) conditions.
The Stefan–Maxwell coefficients and the boundary data for this experiment, both taken from Boudin
et al. (2010), are tabulated in Tables 2 and 3.

TABLE 2. Values of the Stefan–Maxwell diffusion coefficients Di j between species (mm2 s−1)

Species N2 O2 CO2 H2O
N2 21.87 16.63 23.15
O2 21.87 16.40 22.85

CO2 16.63 16.40 16.02
H2O 23.15 21.87 16.02

TABLE 3. Dirichlet boundary data at the entrance of the trachea (Γ1) and the end of the tertiary bronchi
(Γ2). Note that the air is humidified such that the water vapour mole fraction is equal at both Γ1, Γ2

N2 O2 CO2 H2O
Mole fraction at Γ1 0.7409 0.1967 0.0004 0.0620
Mole fraction at Γ2 0.7490 0.1360 0.0530 0.0620

As there are no reactions among the species in the lung, we have ri = 0 for each i = 1,2,3,4.
The solving parameters were set as ε = 10−11 and γ = 1. Following our algorithm from section 5,
convergence was achieved in 12 non-linear iterations. Each linear system had 5,312,524 degrees of
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freedom and was solved on 12 cores. We remark that despite the very low concentration of carbon
dioxide at Γ1, convergence was achieved in few iterations, and the mole fraction remained positive
across all iterations.

FIG. 4. A plot of the distribution of oxygen in the lungs with its velocity vector field (mms−1).

Interesting physical effects are revealed by the diffusional drag forces in the water vapour. Since the
mole fractions for water vapour on the boundaries Γ1 and Γ2 are the same, any concentration gradient of
water vapour is a consequence of diffusional interactions with the other species.

Figure 5 shows modest uphill diffusion of water vapour at the trachea, where the velocity points in
the same direction as the mole-fraction gradient. This can be explained as follows. The difference in
the mole fractions of oxygen and carbon dioxide between the trachea and the tertiary bronchi creates
a strong mole-fraction gradient, which in turn drives the velocity fields of the respective species in
opposing directions. These velocity fields interact with the water vapour and attempt to drag the water
vapour along with them, but the diffusional drag force exerted by CO2 on H2O exceeds the drag by O2
on H2O. Consequently, the water vapour tends to be dragged along with the carbon dioxide — the H2O
velocity flows up the trachea.
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FIG. 5. A plot of the distribution of water vapour in the lungs with its velocity vector field (mms−1).

6.3 Code availability

For reproducibility, the exact software versions used to produce the results in this paper, along with in-
structions for installation, has been archived at https://zenodo.org/record/3860438. The
exact scripts used to produce each numerical experiment can be found at https://bitbucket.
org/AlexanderVanBrunt/maxwell-stefan-diffusion-equations-repository along
with the mesh used for the lungs.

7. Conclusion

We derived a structure-preserving discretization of the steady-state Stefan–Maxwell diffusion problem
based on an augmented saddle point formulation. The inf-sup conditions for the linearized continuous
and discrete systems fundamentally rely on the symmetric positive definite structure of an augmented
transport matrix, which follows from thermodynamical principles and the construction of the augmenta-
tion involving the mass-flux. Error estimates for the general case of n species were then deduced, which
were confirmed with numerical experiments.

This work considers idealized assumptions; many real-world applications require the relaxation of
these assumptions. Future work will likely involve incorporate solving for momentum and including
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more complex driving forces. We hope that the results presented in this paper for the idealized case can
provide guiding principles for a more general setting.
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